
Incompressible Navier-Stokes with Particles
Algorithm Design Document

Dan Martin and Phil Colella
Applied Numerical Algorithms Group

July 24, 2006

1 Overview

We would like to solve the incompressible Navier-Stokes equations with forces
imposed on the fluid by suspended particles:

∂~u

∂t
+ (~u · ∇)~u = −∇p + ν∆~u + ~f (1)

∇ · ~u = 0

where ~f is the force on the fluid from the particles. We will use a drag-law
type of relationship:

~f(x) =
∑

k

~f (k)δε(x − x(k)) (2)

∂x(k)

∂t
= ~u(k)(t) (3)

∂~u(k)

∂t
= k(~u(x(k)(t), t) − ~u(k)(t)) = −~f (k), (4)

1

where the sum is over the suspended particles, and δε(x) is a numerical
(smoothed) approximation to the Dirac delta function δ(x):

δε =
1

2D−1πεD
g(

r

ε
) (5)

g(r) ≥ 0

g(r) = 0 for r > 1
∫ 1

0

g rD−1dr = 1

We need some way of getting the divergence-free contribution of the
particle-induced forces. There are several options.

• (Straightforward approach, based on Peskin [5])
Evaluate the force at all grid points, then project.

~fi = ~f(ih) (6)

Ph(fh) ≈ (P ~f)(ih) (7)

While this is a straightforward application of the immersed bound-
ary approach for this problem (and is relatively simple to implement),

the problem is that the force ~f is singular, so taking the derivatives
necessary for the projection method is problematic from an accuracy
standpoint.

However, we do know that the projection of the singular forcing, P(~f),

is much less singular than ~f itself. As ε → 0, ~f is singular, while P(~f)

is continuous along the direction of ~f .

• (Analytic approach)
A second approach is to analytically determine the projection of the
discrete delta function used to spread the particle force onto the mesh.
If the projection operator is (I − grad(∆−1)div), then we can define
Kε = {Kij}:

Kε(x) = (I − grad(∆−1)div)δε (8)

Ignoring the effects of physical boundaries, the operators can commute:

Kε(x) = δεI − grad div(∆−1)δε (9)

2

Note that ∆−1δε is a 1-D radial Poisson problem, which can be solved
analytically (with the proper choice of δε, of course).

Then, we can evaluate the projection of the forces on the grid:

P ~f =
∑

k

~f (k)Kε(x − x(k)) (10)

While this approach avoids the singularity issues of the first approach,
its problem is expense. Since Kε does not have compact support, the
cost of this approach is O(NpNg), where Np is the number of particles,
and Ng is the number of grid points.

• hybrid approach (based on the MLC algorithm of Cortez and Minion
[2]).
Take the Laplacian of (8):

∆Kε = ∆δε − grad div(δεI) (11)

Note that this does have compact support, since δε = 0 for r > ε.

Now define:
D

(k)
i = ∆h ~f (k)Kε(· − x(k)) (12)

where the (· − x(k)) signifies evaluation at grid points, i.e. (ih − x(k)).
Then,

(∆h)−1D(k) = ~f (k)Kε(· − x(k)) (13)

We can use the compact support of δε and the harmonic nature of **
to make this easier. First, we can only evaluate D locally:

D
(k)
i = ∆h ~f (k)Kε(· − x(k)) for |ih − x(k)| < (ε + Ch) (14)

where C is a safety factor. Then,

Di =
∑

k

D
(k)
i (15)

P ~f (ih) ≈ (∆h)−1D (16)

If C is large enough, and if ∆h is accurate enough, then this approxi-
mation is reasonable.

3

Note that we are referring only to the approaches in [5, 2] for spreading
the force due to the particles to the computational mesh and applying them
to the fluid. We will not use the approaches used to compute particle motion
in [5, 2], since the particles in this work may move at a different velocity from
the fluid, while in [5, 2], particles are constrained to move with the fluid.

2 Discretization of Advance

Using the third approach outlined above, we compute the projected force
PI(~fn) using infinite-domain boundary conditions:

PI(~fn)(x) = (∆h)−1
∑

k

∆h
(
~f (k,n)(δε(x−x(k,n)))−grad div(∆−1)~f (k,n)δε(x−x(k,n)))

)

(17)
Then, we compute ~u∗ in much the same way as the “normal” approach:

~u∗ = ~un − ∆t[(~u · ∇)~u]n+ 1

2 − ∆tGπn− 1

2 + ∆t[ν∆~u] + ∆tPI(~fn) (18)

where [ν∆~u] is computed using the TGA algorithm, and the advective term
is computed using the second-order upwind scheme outlined in [4], including

PI(~fn) as a force in the predictor step.
In order to make the time advance formally second-order in time, we now

update the particle positions and velocities:

~uk,∗ = ~uk,n + ∆t ~fk,n (19)

xk,∗ = xk,n + ∆t~uk,n (20)

We then use the new particle data to compute the projected drag force (again

using infinite-domain boundary conditions) PI(~f ∗). Then, modify ~u∗ to make
the update second-order in time and project:

~un+1 = P(~u∗ + ∆t[Gπn− 1

2 −
1

2
PI(~fn) +

1

2
PI(~f ∗)]) (21)

Note that the projection is also applied to PI(~f); this is done to enforce

the physical boundary conditions, since PI(~f) was computed using infinite-
domain boundary conditions (with image particles used to approximate the
effects of the solid walls for particles near the walls, as outlined in the fol-
lowing section).

4

We then can use the updated velocities to update the particle information
to the new time level:

~uk,n+1 = ~uk,n +
∆t

2
(~fk,n + ~fk,∗) (22)

xk,n+1 = xk,n +
∆t

2
(~uk,n + ~uk,∗) (23)

3 Evaluating PI(~f)

We want to approximate the divergence-free contribution of the drag force
PI(~f).

In indicial notation,

(P ~f(x))i =
∑

k

f
(k)
j (δij∆ − ∂i∂j)(∆

−1)δε(x − x(k)) (24)

Define K
(k)
ij (x) = (δij∆ − ∂i∂j)(∆

−1)δε(x − x(k)). Then,

Pf(x)i =
∑

k

f
(k)
j K

(k)
ij (25)

Use a MLC-type approach; approximate D = ∆K by D̃ = {D̃ij}:

D̃
(k)
ij (x) =

{
∆hK

(k)
ij (x) if r < ε + Ch

0 otherwise
(26)

Then,

Pf(x)i =
∑

k

f
(k)
j K

(k)
ij (x) (27)

∆hPf(x)i =
∑

k

f
(k)
j ∆hK

(k)
ij (x) (28)

≈
∑

k

f
(k)
j D̃

(k)
ij (x) (29)

Pf(x)i ≈ (∆h)−1
∑

k

f
(k)
j D̃

(k)
ij (x). (30)

We solve (30) with infinite-domain boundary conditions on PI
~f(x) (note the

subscript, which indicates the use of inifinite-domain boundary conditions

5

as opposed to the standard projection operator P(~u), which uses regular
physical boundary conditions).

To better approximate the no-normal-flow boundary condition at physical
walls, we also use image particles for all particles near the wall. For each
particle within (ch + ε) of the wall, we add an image particle on the other
side of the wall with the opposite induced velocity field normal to the wall,

We create a much larger computational domain which contains our com-
putational domain Ω, which we denote by Ω∗. We discret]ize Ω∗ using a

Cartesian mesh with a mesh spacing H = O(h
1

2). We transfer the problem
to the larger and coarser domain Ω∗ and solve on this larger domain:

P̃If(x)i = (∆H)−1
∑

k

f
(k)
j D̃

(k)
ij (x) on Ω∗, (31)

using infinite-domain boundary conditions [1, 3].

3.1 Evaluating K

We need to compute K = Iδε − grad div(∆−1)δε. First, define W (r) =
(∆−1)δε, and Q(r) =

∫ r

0
δε(s)s

D−1ds. We will find it useful to evaluate W (r)
as follows:

1

rD−1

∂

∂r
(rD−1 ∂

∂r
W (r)) = δε(r)

rD−1 ∂

∂r
W (r) =

∫ r

0

δε(s)s
D−1ds

∂

∂r
W (r) =

Q(r)

rD−1
(32)

Then, we can evaluate Iδε − grad div(∆−1)δε:

K
(k)
ij = δijδε(r) − ∂i∂j(∆−1)δε(r) (33)

= δijδε(r) −
∂

∂xi

(
∂

∂xj

W (r)) (34)

= δijδε(r) −
∂

∂xi

(
∂r

∂xj

∂

∂r
W (r)) (35)

6

Without loss of generality, we use a coordinate system centered at x(k),
so that (x − x(k)) = x. We know that ∂r

∂xj
=

xj

r
. Then, using 32,

K
(k)
ij = δijδε(r) −

∂

∂xi

(
(
xj

r
)
Q(r)

rD−1

)
(36)

= δijδε(r) −
[
δij

Q(r)

rD
+

xixj

r

(rD−1δε(r)

rD
−

DQ(r)

rD+1

)]

K
(k)
ij = δijδε(r) − (

δij

rD
−

Dxixj

rD+2
)Q(r) −

xixj

r2
δε(r) (37)

4 Pseudocode description of approach

Here is an outline of the approach to solve for the divergence-free contribution
of the drag force PI(~f):

1. For each space dimension, d, do:

(a) set Di,d to 0 for each cell i in the domain.

(b) For each cell i in the domain, do:

i. Determine the group of cells p which fall within the region
|ph − x(k)| ≤ (Ch + ε) for all particles k in cell i.

ii. For each particle k in cell i do:

A. Using (37), compute D
(k)
p,d = ∆h(f

(k)
j K

(k)
dj) for all p.

iii. Increment D: Dp,d := Dp,d +
∑

k D
(k)
p,d

(c) Solve for PI(fd): PI(fd) = (∆h)−1Dd, using inifinite domain bound-
ary conditions.

5 Specifying δε(r)

To completely specify the numerical delta function δε in (5), we need to
specify the form of g(r). For the initial implementation, we are taking g to
be a polynomial function in r:

g(r) = A + Br + Cr2 + Dr3 + Er4 + Fr5 (38)

7

Two constraints on g are specified in (5); we supply 4 more. The full set of
constraints are:

g(1) = 0 (39)
∫ 1

0

g rD−1dr = 1

g′(0) = 0

g′(1) = 0

g′′(1) = 0.

g′′′(0) = 0

The constraint on the third derivative term is designed to remove a singular
term in the divergence which is proportional to g′′′ at the origin. Given these
specifications, the constants in (38) for a 3 dimensional problem are:

A = 21 (40)

B = 0

C = −70

D = 0

E = 105.0

F = −56

References

[1] Greg Balls. private communication, 2002.

[2] R. Cortez and M. Minion. The blob projection method for immersed
boundary porblems. JCP, 161(2):428–453, July 2000.

[3] R. A. James. The solution of Poisson’s equation for isolated source dis-
tributions. JCP, 25, 1977.

[4] D Martin and P Colella. A cell-centered adaptive projection method for
the incompressible Euler equations. J. Comput. Phys., 2000.

[5] C.S. Peskin and D.M. McQueen. A three-dimensional computational
method for blood flow in the heart: I. immersed elastic fibers in a viscous
incompressible fluid. JCP, 81:372, 1989.

8

